Wright Brothers – Invention Of The Airplane

Articles relating to the Wright Brothers’ invention of the airplane.

The Secret of Flight

by Dr. Richard Stimson

in Inventing The Airplane

Since ancient times mankind has looked up to view birds flying and dreamed of flying.

The Wright brothers were no different. They often rode their bicycles to a popular picnic area south of Dayton called the “Pinnacles” to observe the many birds that flew there. Early on they decided that practical flight was possible by man using soaring large birds as their model.

The Pinnacles consisted of a gorge with a river flowing through it and unique large boulders created during the ice age on its slopes. The updraft created by the terrain attracted soaring birds. The Wright brothers regularly observed birds there from 1897 to 1899.

The Wrights developed their wing warping theory in the summer of 1899 after observing the buzzards at Pinnacle Hill twisting the tips of their wings as they soared into the wind.

The Wrights made the right decision by focusing on large birds. It turns out that small birds don’t change the shape of their wings when flying, rather they change the speed of their flapping wings. For example, to start a left turn, the right wing is flapped more vigorously.

To turn right the speed of flapping is changed to the other wing.

To fly straight, both wings are flapped at the same speed.

Incidentally, the technique is the same for creatures from fruit flies and moths to hummingbirds and cockatoos.

These findings were found through research with high-speed video of seven species at the universities of Delaware and North Carolina.

A frustrated Wilbur exclaimed to Orville in August 1901, “Not in a thousand years will man ever fly.”

At the time they were on a train returning to Dayton after failing for the second year in a row to achieve the lift for their glider that their calculations predicted. Wilbur recorded in his diary, “Found lift of machine much less than Lilienthal’s tables would indicate, reaching only about 1/3 as much.”

After further thought, Wilbur was cheered by the conclusion that the data they were using might be in error. In a speech on September 18 to the Western Society of Engineers, Wilbur suggested that “the Lilienthal tables might themselves be somewhat in error.” He also questioned the accuracy of the Smeaton coefficient.

Both the Lilienthal data and the Smeaton coefficient are used in the formula for calculating lift.

Otto Lilienthal was a famous German glider experimenter who had published a table containing coefficients of lift in 1895. The coefficient of lift is a multiplying factor that takes into consideration the various angles a wing assumes with regard to the flow of air know as the “angle of attack.” The value of the lift coefficient also varies with the shape of the wing.

The Smeaton Coefficient was used in the calculation of lift at the time of the Wright Brothers. It is a constant number used as a “coefficient of air pressure.” It serves as a multiplying factor used to calculate the numerical value of lift in air, as compared to other mediums, such as water or oil.

John Smeaton, an engineer, determined the value of this coefficient was 0.005 in 1759, from his study of windmills. Engineers used this value for 150 years, although others questioned its value and thought it was too high, including the famous early aviation pioneer George Cayley in 1809.

Both Lilienthal, in Birdflight, and Octave Chanute, in Progress in Flying Machines, cited the 0.005 value in their books. This heavily influenced the Wrights in using the same value.

The Wrights would soon find that the 0.005 value was too high. The error was a major cause of their calculation of a lift value that was too high.

Note: The Smeaton coefficient is no longer used in modern aerodynamic problems. Problems are formulated differently. My son, who is a graduate aeronautical engineer, had never heard of Smeaton when I first asked him about it.

Smeaton wasn’t the only source of their discrepancy between actual lift and their calculated values. They incorrectly interpreted the Lilienthal tables by not understanding that the table only applied to the one wing shape that Lilienthal used in his study. The wings that the Wrights used in 1900 and 1901 had different aspect ratios as well as differences in the location of the maximum camber of the wing.

The aspect ratio is a measure of the relationship between the length of the wing to the cord (width). The aspect ratio affects the value of the lift coefficient. Lower values of aspect ratio give lower values of the lift coefficient and visa versa within limits.

The aspect ratio for the Wright 1900 glider was 3.5 and the 1901 glider was 3.3. These values were considerably lower than the aspect ratio of 6.8 for the Lilienthal test wing. In other words, the Lilienthal wing was longer and narrower compared to the Wrights’ wing. The lift coefficient from Lilienthal’s tables used by the Wrights should have been reduced by 19% to account for their use of a lower aspect ratio.

Their other problem of interpreting the Lilienthal table had to do with the location of the point of maximum camber (high point on the curved wing).

The Wrights located their maximum camber close to the leading edge of the wing. The Lilienthal test wing was a circular shaped wing with the maximum point located at the middle of the cord. Here again the value coefficient of lift read from the table should have been reduced to account for the difference in location of the maximum camber.

The cumulative impact of the above errors on the calculation of lift amounted to the 1/3 reduction in lift that Wilbur noted for the Kitty Hawk 1900 and 1901 glider flights.

The Wrights decided to take a different approach to the problem of calculating lift. Rather than further examining the existing data provided by others, they decided to compile their own. They built an instrumented wind tunnel and developed their own aerodynamic data by systematically testing some 200 airfoils of widely different shapes and configurations, going well beyond the Lilienthal table.

Shapes included squares, rectangles, and ellipses in configurations such as biplanes and triplanes. They included camber ratios ranging from 1/6 to 1/20 and maximum camber locations ranging from near the leading edge to the 1/2-chord position.

They found that the correct value of the Smeaton coefficient should be 0.003 and developed their own table of lift coefficients (and drag coefficients).

Their airfoil #12 was found to be the most aerodynamically efficient. Its camber was 1/20 and the aspect ratio was 6. This foil was used as a guide in designing their successful 1902 glider and ultimately the successful 1903 Flyer.

The 1902 glider had an AR of 6.7, about twice that of their previous gliders, and used camber ratios much shallower than Lilienthal test wing.

With his new knowledge and understanding, he wrote to Chanute in October 1901, “It would appear that Lilienthal is very much nearer the truth than we have heretofore been disposed to think.”

It turned out to be fortunate that the Wrights had problems with the determination of lift. It led them into doing research that propelled their knowledge far beyond anyone before them and established the Wright Brothers as the leading aeronautical engineers of their day.

Reference: A History of Aerodynamics by John D. Anderson

Fred C. Kelly, the Wright brothers’ first biographer asked Orville in 1939 if it was the profit motive that motivated he and his brother to invent the airplane.

He reflected for a moment before responding, “I hardly think so. I doubt if Alexander Graham Bell expected to make much out of the telephone. It seems unlikely that Edison started out with the idea of making money. Certainly Steinmetz had little interest in financial reward. All he asked of life was the opportunity to spend as much time as possible in the laboratory working at problems that interested him.”

Kelly asked, “And the Wright brothers?”

Orville chuckled. “If we had been interested in invention with the idea of profit, we most assuredly would have tried something in which the chances for success were brighter. You see, we did not expect in the beginning to go beyond gliding.”

“Even later we didn’t suppose the aeroplane could ever be practical outside the realm of sport. It was the sport of the thing that appealed to Will and me.”

“The question was not of money from flying but how we could get money enough to keep on entertaining ourselves with it.”

“It was something to spend money on, just as a man spends on golf, if that interests them, with no idea of making it pay.”

Kelly: “You didn’t foresee commercial planes or transcontinental and trans-Atlantic flights?”

Orville: “No; and in our wildest dreams, even after we had flown, we never imagined it would ever be possible to fly or make landings at night.”

Kelly: “Still, it seems strange that you didn’t have more of a profit motive, inasmuch as you had been in business as a means of making a living and obliged to make the business pay. Didn’t you go into the printing business as a youngster to make money?”

Orville: Shaking his head with a smile replied. “I got interested in printing after my curiosity had been aroused by some woodcuts I saw in the Century magazine, and I tried to make some tools for carving wood blocks. The first tool was made from the spring of an old pocket-knife.”

“Gradually I became more and more interested in printing. But, making it pay its way came as an afterthought.”

Their father, Bishop Milton Wright used to say, “All the money anyone needs is just enough to prevent one from being a burden on others.” Following their father’s advice, the brothers tried to earn their own spending money and never became interested in a hobby because it might be profitable.

When the Wrights were conducting their wind tunnel experiments, they became concerned that their experiments were taking too much time and money for their modest means. They were worried that they would not get their money back and permitting their hobby to become too much of a luxury.

Wilbur was inclined to drop their researches. Orville thought they should continue a little longer. If Wilbur had quit, Orville would have too.

While they were still debating the issue, a letter arrived from their friend and mentor Octave Chanute. Chanute, suspecting their resolve to continue was weakening, urged them to continue with their experiments.

He reminded them that they already had valuable knowledge of aeronautics far beyond that possessed by anyone else in the world. To go on was almost a duty. And so the Wrights shelved their concerns and continued their research.

One thing they did do to save money was to experiment as much as possible on paper rather than making mechanical models. Before they built anything they were reasonably certain it was scientifically correct. They spent much time on grueling mathematical work before flight was possible.

Their insistence on doing everything possible on paper was successful in keeping costs down. Kelly claims that up to the day when they actually flew, the Wrights’ total outlay of money was a trifle less than $2,000. Some more recent estimates are that they spent event less, closer to $1,200.

Even after the Wrights had flown, they still did not know if they had done anything from which they could gain a fortune. They accepted the money that fell unexpectedly into their laps, but Orville said to Kelly, “I am not sure it’s quite decent to live on income from interest-bearing paper.”

Kelly said that he once said to Orville that even though what you accomplished was without the idea of making money, the fact remains that the Wright brothers will always be favorite examples of how American lads, with no special advantages, can forge ahead and become famous.

In response Orville protested, “But that isn’t true because we did have special advantages.

Kelly: “What special advantages?”

“Simply that we were lucky enough to grow up in a home environment where there was always much encouragement to children to pursue intellectual interests. We were taught to cultivate the encyclopedia habit, to look up facts about whatever aroused our curiosity. In a different kind of environment I imagine our curiosity might have been nipped long before it could have borne fruit.”

Reference: Harpers Magazine, “How the Wright Brothers Began,” Fred C. Kelly, October 1939.

The age of flight dawned on the morning of December 17, 1903 at Kitty Hawk, NC when the Wright Brothers’ engine-driven heavier-than-air Flyer lifted into the air and traveled 120 feet in 12 seconds. It was an extraordinary moment. The way that the press handled the event was far less than extraordinary.

That afternoon, after eating a leisurely lunch, the brothers set out about 2 o’clock to walk the four miles to the weather station office in Kitty Hawk. They sent a telegram of their success to their 74-year-old father in Dayton, Ohio. Three months earlier, while seeing his sons off in Dayton, Bishop Wright had given them a dollar to cover the cost of sending a telegram as soon as they made a successful flight. Now was the time.

There was no Western Union in Kitty Hawk, but Jim Dosher at the weather station had agreed to communicate with the weather bureau office in Norfolk who in turn would contact Western Union.

Dosher, however, was unable to deliver the news because of a break in the telegraph line. He telephoned Alpheus Drinkwater at another location on the Outer Banks who transmitted the coded message of the Wright Brothers’ successful flight to Norfolk. Drinkwater later said he was bit annoyed that he had to relay a few unimportant telegrams to the mainland.

(Note: The accuracy of the last paragraph involving the role of Drinkwater is in some dispute among historians. On the occasion of the dedication of the Wright Memorial in 1932, Orville Wright was asked who sent the first message – Drinkwater or Dozier? Orville stated: “The first message was sent by W. J. Dozier.” – News and Observer, Nov. 20, 1932 )

Orville wrote the message that was sent as follows:

“Success four flights Thursday morning all against twenty one mile wind started from level with engine power alone average speed through air thirty one miles longest 57 seconds inform press home Christmas. Orvevelle Wright”

An error in transmission cut two seconds off the longest flight time of 59 seconds and Orville’s name was misspelled. The wind speed of 21 mph is confusing. What Orville meant to say is that the wind was at least 21 mph during each of the four flights. The first successful flight was against a 27-mph wind.

The Norfolk operator sent a return message asking if he could share the news with a reporter at the “Norfolk Virginian-Pilot.” The Wrights gave an emphatic no! They wanted the first news of the event to be from Dayton.

The Norfolk operator, Jim Gray, ignored the negative answer and provided the information to a friend, H. P. Moore, at the paper. Having little information other than that provided in the telegram, the “Virginian-Pilot” fabricated a fanciful and inaccurate story that was published the next morning with the headline:

“Flying Machine Soars 3 Miles in Teeth of High Wind Over Sand Hills and Waves at Kitty Hawk on Carolina Coast.”

They also offered the story to the Associated Press (AP) and when they declined the story, offered the story to twenty-one newspapers.

Meanwhile Orville’s telegram arrived at 5:25 that evening. The Wrights’ father, Milton Wright, instructed daughter Katharine to walk over to her brother Lorin’s house and ask him to take the telegram to the local newspaper office for publication.

Lorin went downtown to the offices of the “Dayton Journal” and spoke to Frank Tunison, local representative of the Associated Press. Tunison was unimpressed with the telegram saying, “If it had been 57 minutes then it might have been a news item.”

Two other Dayton papers did publish an account the next day in the afternoon editions. The account in “The Dayton Daily News” gave a reasonably accurate account except that it made a big mistake in indicating that the Wrights were imitators of the world famous Alberto Santos-Dumont. The headline read “DAYTON BOYS EMULATE GREAT SANTOS-DUMONT.”

Santos-Dumont was a Brazilian who pursued aviation in France. In 1901, he had dazzled the French public by rigging an engine to a hot-air balloon and flew around the Eiffel Tower. The Dayton news-editor didn’t recognize the vast difference between balloons and airplanes.

The account in “The Dayton Evening Herald” under the heading of “Dayton Boys Fly Airship,” was a 350-word rehash of the fabricated story that had earlier appeared in the “Norfolk Virginian-Pilot.” The AP, the day after the first flight, had sent out an abbreviated version of the Norfolk piece.

The story was full of errors. “The machine flew for three miles — and then gracefully descended to earth at a spot selected by the man in the navigator’s car —.” “Preparatory to flight the machine was placed on a platform on a high sand hill —.” “When the end of the incline was reached the machine gradually arose until it obtained an altitude of sixty feet —.” “There are two six-blade propellers, one arranged just below the frame so as to exert an upward force when in motion and the other extends horizontally to the rear from the center of the car, furnishing the forward impetus.” Orville had run around shouting, “Eureka!”

The Wrights, mystified how a short low-keyed message in a telegram could have gone so wrong, prepared a correct story on January 5th of their successful flights and gave it to the AP with a request that it be printed. It appeared in a majority of the AP newspapers the next day.

Exactly one month after the historic flight, the New York Herald still had it wrong and published an article showing a picture with two “six-bladed” propellers and an engine beneath the airplane to provide lift.

Wilbur and Orville gave no details about their airplane. It was their invention, developed at their own expense, and they did not yet intend to provide any pictures or detailed descriptions of their Flyer.

The following is a talk that Tom Crouch gave on August 19, 2007. Crouch is senior curator of aeronautics at the National Air and Space Museum of the Smithsonian Institution and author of “The Bishop Boys” and other books. The talk took place during the morning in the Pavilion auditorium at the Wright Brothers National Memorial, Kill Devil Hills.

Crouch: Today, August 19, 2007 is a special day. It is Orville Wright’s birthday. It is also since 1938, National Aviation Day as well. And to really top it off, it is Katharine Wright’s birthday. Orville Wright and his sister, who is three years younger than Orville, were born on the same day. If Orville were alive today he would be 136 years old.

Orville was half of the team who invented the airplane. Wilbur was four years older than Orville. They lived in Dayton, Ohio where I was born. Their father was a bishop in a church and had an extraordinary impact on their lives.

When I wrote a biography of the Wright brothers, I called it, “The Bishop Boys,” to honor their father. Their mother was extraordinary as well. The Bishop couldn’t pound a nail straight; he wasn’t a very mechanical guy. Their mother was interested in mathematics and science and grew up in her father’s carriage shop and developed suburb mechanical skills.

Both parents contributed enormously to the invention of the airplane. They had great parenting skills and techniques. They were the kind of parents that did everything they could to encourage the curiosity of their children. They tried to answer the questions that the kids had and encouraged them to conduct their own experiments to get answers to their questions and it gave them enormous self confidence in their own capacity to do things.

One of the most extraordinary things about the Wright brothers psychologically, without which they never would have invented the airplane, was this extraordinary intellectual self-confidence that they had. These were two guys who had not gone to college and yet they were absolutely sure that when they conducted a piece of work they could trust the answer. So, they had that going for them.

Wilbur and Orville were close to one another. They had often said that growing up they had shared lots of things together such as their toys and ideas. They had played together and conducted experiments together and all that. Again, that is something else they had going for them.

I think that if they hadn’t been as close as they were, the two of them, they might not have been able to do what they did as single individuals. When it comes to the Wright brothers the whole was a whole lot greater than the sum of the parts. Together they were a pretty extraordinary team.

But they had distances too. Wilbur, for example, cared very little about personal appearance and that sort of thing.

Orville on the other hand was very much interested in all of that. He was the snappiest dresser in the family. To such an extent that when Wilbur went off in November 1901 to give the biggest speech of their lives, one of the most important speeches in the entire history of aeronautics, he went wearing his brother’s suit because Kate, their sister, recognized that Orville’s suit was in better shape and a lot better looking than Wilbur’s best outfit. So Wilbur gave his speech in Orville’s suit, shirt and tie.

Why did they go to Kitty Hawk? Why didn’t they do what they were going to do in Dayton? The answer is that Dayton is not a very windy place.

When the Wright brothers first became interested in flight, the first thing they did was to really take a look at the literature of flight that existed at that time. These guys were not college graduates, but at the same time, they were engineers of absolute genius. And they started out exactly the right way by reading what other people had written about flight.

As they drew some conclusions out of that reading, it was Wilbur who said, “look you can reduce this problem to three basic systems. If you are going to invent an airplane you have to have wings that are going to generate lift, you got to have a propulsion system that will move the wings through the air and you got to have a way to control the wings once you’re in the air. Lift, aerodynamics, propulsion and control – that’s it.”

As they looked around they recognized that people had learned something about wing design, for example. Not as much as the Wright brothers had originally thought they had, but at least enough to give them a starting point. And from the looks of what other experimenters had done with wings. They saw that they could actually calculate the amount of lift that a given wing design would generate in a wind of a particular speed.

When they ran the numbers they discovered that you were either going to have to build a pretty huge machine or you were going to have to fly in a pretty substantial steady headwind. They couldn’t find that kind of headwind in Dayton.

So they wrote to the U.S. Weather Bureau which kindly sent them weather statements with average winds at all the weather stations from coast to coast in the United States. It turned out that the windiest places actually were, as you might expect, cities on lakes. Places like Chicago and Buffalo, New York and places like that.

The Wright brothers didn’t want to conduct their experiments in urban areas. They really wanted to do this sort of on their own away from prying eyes and newspaper reporters and that kind of thing. So they went down the list. The first really rural isolated place on the list was Kitty Hawk, NC.

Where we are sitting now at the memorial is not Kitty Hawk, rather it is Kill Devil Hill. Kitty Hawk is located some four miles north of here. That is where the weather station was also located. And so when the Wright brothers found out about this windy little place on the isolated outer banks of NC, they wrote a guy named Joe Dosher who was running the weather station at that point and the only employee of the weather service at that time.

Dosher sent a short note back to the Wrights, but he recognized there were probably people in the village who were better than him to explain what this place was like to the Wright brothers than him. He turned Wilbur’s letter over to Bill Tate. Tate’s wife was the postmaster of Kitty Hawk. Bill had been the postmaster of Kitty Hawk, but his wife was doing it at the time.

Bill Tate wrote the brothers a very long and wonderful letter back talking about the fact that yes, if you guys want winds to fly into, we have dunes that you could conduct your experiments from and there are not a lot of trees that you can run into. The letter was just enough to let the Wright brothers know that in fact this was going to be a pretty good place to come.

But I think the clincher was that at the end of the letter Tate said something like “if you come down here, I can promise you one thing, you will find friendly people who will do what they can to extend a hand and help you with your experiments.”

I’m pretty sure that is what sold the Wright brothers on Kitty Hawk.

Wilbur set out for Kitty Hawk by himself. They had mostly prefabricated the glider in Dayton. So he set out on what was the greatest adventure of his life.

These guys were middleclass small businessmen from Dayton, Ohio. They had gone to the Chicago World’s Fair, but they really weren’t great travelers. So this really was an adventure for Wilbur Wright.

He set out from Dayton on a Big Four train for Cincinnati. In Cincinnati he changed to a B &O train which came all the way down the Ohio River, cut down across West Virginia, down through Virginia, passed Charlottesville, Gordonsville, and all the way down to Hampton Roads.

At Hampton Roads he had to get all his stuff on a steamer that would take him across Hampton Roads. He could catch the Southern Railroad train on the other side of Hampton Roads that would take him on down to Elizabeth City, where he had to buy some of the additional things he needed for the glider.

When he got to Elizabeth City, that was the end of the line. He had no idea how to get out here to Kitty Hawk. He had to go down to the docks and ask around for a guide who was willing to take him and his equipment across Albermarle Sound. He sailed on a leaky old sailboat into Kitty Hawk Bay spent the night on the boat anchored just off shore. The next morning he came ashore with all of his stuff.

Orville came down a little bit later that year. Wilbur told him it was a good place and I’m working on the glider. So Orville comes down.

They flew three gliders at Kitty Hawk — 1900, 1901, and 1902. The 1900 season was a little disappointing. They discovered that the glider they had designed so carefully didn’t generate as much lift as they had calculated it was going to.

They didn’t give up. They went back to Dayton. They decided there is some kind of a puzzle here; we will just build a bigger glider.

They came back to Kitty Hawk the next year, 1901, with a bigger glider and that was the first time they could really make genuine flights.

It was also the first time they got really scared. Now for the first time they were actually in the air and they discovered that although they had a pretty good notion of control, they could now recognize that they didn’t really have a good handle on control.

And once more this airplane was still not generating as much lift as their calculations had predicted. This meant that other people hadn’t known as much about wings as the Wright brothers had hoped they had.

So, they went back to Dayton and conducted some wind tunnel tests and came back with the 1902 glider in 1902. All the 1902 glider flights were made right outside here where the memorial now stands. There were actually four Kill Devil hills around here at the time, some of which were actually just small humps.

The 1902 flights were the first time that they had the feeling that they were home free. Now they had a machine that pretty much performed as predicted and was controllable, fairly so anyway. So they were ready to go ahead with the design of a powered flying machine, which they did.

And of course on December 17, 1903 at the base of the big Kill Devil Hill, their machine flew. They only made four flights that morning. Orville, whose birthday is today, made the first one

They took turns – Orville – Wilbur – Orville – Wilbur.

Orville’s first flight wasn’t all that much to write home to mother about – only about 120 feet, 12 seconds. But each flight was better than the one before it. By the fourth flight Wilbur was really beginning to get the hang of the thing. He flew almost 900 feet down the beach in the direction of Kitty Hawk. He was in the air almost a minute — 59 seconds.

Again, there were control issues, but he recognized that they were getting a handle on those.

He made a hard landing at the end of that fourth flight and they had to bring the airplane back down to the hanger. They reckoned that it was going to take a couple of days to perform the repairs on it. It was cold that day and they went into the shed to warm their hands up, and to make a long story short, a wind came up, tumbled the airplane, and when that episode was over, the world’s first airplane was sort of broken sticks, snapped wire, and torn fabric. They decided to take the pieces back to Dayton.

That’s why the world’s first airplane in our museum in Washington D.C. only made four flights, those four between 10:35 and noon on Dec 17, 1903.

That’s a little something about the guy whose work we are celebrating today and his brother. And I always include their sister too.

There have always been sort of epochal stories about the extent to which Katharine, who was a schoolteacher in Dayton and the only college graduate in that generation of the family, gave money to her brothers or helped them with higher mathematics. None of that is true. They did all of that on their own.

All the money that they spent coming down here, camping out, building the airplanes, testing them, all of that came out of the bicycle shop. Everything they needed to know to build that airplane – the mathematical base that they needed, the reading they had to do — that was all them. Kate had nothing to do with any of that.

On the other hand, I argue that if it hadn’t been for her, they might not have done what they did at all. Kate gave them a home. Neither of them ever married. They lived in their father’s home and Katharine Wright made that a home for them. After teaching at a high school all day in Dayton, she would supervise the cooks and the people that cleaned the house, and that kind of thing, and made it a home for all of them, for the Bishop as well as Wilbur and Orville.

And she was also the glue that sort of kept the family together. If you doubt that all you have to do is read Orville and Katharine Wright’s letters back and forth to one and the other. They’re wonderful letters. A friend of mine, a guy with whom I have been coming down here for 25 years, and I are editing a final volume of the Wright letters written between 1907 and the time of Wilbur’s death in 1912. We are bringing the project to an end that the original editor of the papers of Wilbur and Orville Wright always wanted to do.

But when you read those letters and again the unpublished ones too. It just comes home to you what wonderful writers and warm human beings made up this family, the extent to which they cared about one another, supported one another, and just really did their best to support one another.

So those are the two people, Orville and Kate, whose birthday we are celebrating today and its National Aviation Day too as I said. So actually we are celebrating the whole thing.