Propeller Design Demonstrates the Genius of the Wright Brothers

by Dr. Richard Stimson

in Inventing The Airplane

The immediate impression of the Wright brothers is that they were just two bicycle mechanics from Dayton, Ohio who invented the first successful airplane. Maybe they were just lucky and stumbled on the solution through trial and error because this was a feat that had eluded the best minds for thousands of years.

After all, the brothers didn’t have a scientific degree or any formal education beyond high school. But don’t let that fool you. The reality is that they were brilliant scientists that outperformed the scientific elite of the day in the use of the modern scientific process.

The Airplane Propeller

An example of their prowess is their approach to the solution of an intractable engineering problem associated with their invention of a deceptively simple item, the airplane propeller.

In 1902, after their third trip to Kitty Hawk, they were confident that their glider would fly under pilot control. The next task was to develop a mode of propulsion.

They proceeded to design and build a small gasoline engine weighing 180 pounds that produced 12-horsepower. Now, they needed a propeller to go with it.

That seemed easy enough. Propellers have been used for years on ships. The respected scientist Samuel Langley, the Secretary of the Smithsonian had written in Experiments in Aerodynamics, “there is considerable analogy between the best form of aerial and of marine propellers.”

The Wrights initially thought they could convert the design information on ship propellers to flight technology. “We had thought we could adopt the theory from marine engineers, and then by using our tables of air pressures, instead of the tables of water pressures used in their calculations, that we could estimate in advance the performance of the propellers we could use.”

A trip to the Dayton Public Library quickly disillusioned them of the notion that this was going to be an easy task. Their research found there was no empirical information on how to do this and they didn’t have the time to use the trial-and-error approach used by marine engineers (the Wrights called it “cut and try”). They decided to develop new theory and design the propellers from scratch.

Their usual approach to solving complex problems was to first think about the problem and mentally develop a testable theory. Often, the brothers brainstormed ideas by vigorously debating ideas. Often these debates turned into shouting matches that were annoying to their sister, Katharine. Sometimes they would convince each other of the other’s argument and change sides to argue the opposite point of view.

Propellers as Rotating Wings

Out of this process came the insight that propellers acted like rotating wings traveling in a spiral course through the air. The rotating propeller blades act as airfoils that produce a pressure differential. Less pressure is created on the front of the spinning cambered blade than there is on the back, thus the rotating blade produces thrust that moves the airplane forward.

Now that they had the concept, the problem became how to calculate the thrust of a rotating blade. The blade must produce sufficient thrust to propel the airplane off the ground and sustain it in the air. Flight would not be possible if sufficient thrust couldn’t be generated to overcome drag.

The problem was difficult. Orville describes it best in a December 13 issue of Flying Magazine, “It is hard to find even a point from which to make a start; for nothing about a propeller, or the medium in which it acts, stands still for a moment. The thrust depends upon the speed and the angle at which the blade strikes the air; the angle at which the blade strikes the air depends upon the speed at which the propeller is turning, the speed the machine is traveling forward, and the speed at which the air is slipping backward; the slip of the air backward depends upon the thrust exerted by the propeller, and the amount of air acted upon. When any of these changes, it changes all the rest, as they are all interdependent upon one another.”

The Wrights did have one advantage. They had data from their wind tunnel experiments in which they had tested some 200 airfoils (wing shapes). They selected airfoil number 9 as their baseline because it showed the best efficiency under a variety of conditions.

The brothers developed a series of quadratic equations from which they designed the propeller. All this work was accomplished before the advent of computers. Based on their calculations, they used hatchets and drawknives to carefully carve a piece of wood into an eight-foot propeller with a helicoidal twist based on airfoil number 9.

After three months of effort, they tested their propeller in their bicycle shop using a two-horsepower motor with excellent results. The thrust achieved was found to be within 1% of what they had calculated — a truly amazing result.

Orville gleefully wrote to George Spratt, “Isn’t it astonishing that all these secrets have been preserved for so many years just so that we could discover them.”


In June, they designed and made two propellers to be used on their machine, the Flyer. They determined that they could achieve greater thrust with two propellers rotating slowly, than they could with one propeller rotating faster.

Orville wrote, “all the propellers built heretofore are all wrong.”

Each propeller was 8.5 feet in diameter and made of three 1 1/8 inch thick laminations of spruce with the wing tip covered with light duck canvas glued on to prevent the wood from splitting. The entire propeller was then coated with aluminum paint.

The propellers were connected to the engine through a chain, gear and sprocket system, similar to a bicycle design. The propellers rotated 8 revolutions for every 23 revolutions of the engine. The two propellers were designed to provide a combined thrust of 90 pounds at airspeed of 24 mph and turning at 330 rpm.

The linkage was designed to rotate the propellers in opposite directions so as to counteract the torque effect of each rotating blade. This was achieved by crossing one set of chains in a figure eight and encasing the chains in medal tubes to keep them from flapping. The chains were procured from the Diamond Chain Company of Indianapolis.

The propellers were mounted at the rear of the wings as “pushers” to eliminate the effect of turbulent airflow upon the wings.

The finished product produced a maximum efficiency of 66% (Some recent tests achieved 70%). That means that 66% of the horsepower of the small motor was converted by the propellers into thrust. This was far superior to any other inventors who were attempting to fly with engines of much greater horsepower and still couldn’t sustain flight.

On December 17, 1903, the little engine with the efficient propellers pulled Orville off the launching rail and into the air producing the first heavier than air flight in the history of mankind.

Their remarkable achievement demonstrates the genius of the Wright Brothers and places them within the ranks of the greatest inventors in history.

Final Notes

An exact reproduction of the 1903 Flyer is scheduled to fly at Kitty Hawk on December 17, 2003 to celebrate the centennial anniversary of the first flight. The Wright Experience of Warrenton, Va., headed by Ken Hyde, is researching and building the Flyer.

Larry Parks, a volunteer working for Wright Experience, is carving the propellers using mainly antique tools. A member of the Wright family has provided an original 1904 propeller to aid in the project.

The Wrights continued to improve their propellers after 1903. One of the more interesting improvements was the so-called “bent end” propeller introduced in 1905. The purpose of the design was to prevent twisting under pressure.

Ken Hyde had one of their remanufactured 1911 bent end propellers that was used on Wright Model B airplane tested at the Langley Full Scale Wind Tunnel. It achieved an efficiency of 77% operating at a flying speed of 40 mph.

Hyde commented, “The performance of our remanufactured Wright propeller was amazing, when you consider that today’s wood propellers are only 85% efficient.”

Next post: