Others

People were still trying to invent the airplane five years after the Wrights had flown.

The story of one such attempt August 8 was published in August 9, 1908 by the Inter-Mountain Republican newspaper in Salt Lake City.

Here is the article:

Opined That He Also Could Sail The Air

Finds His Wings Are Good Life Preservers But Not For Flying

Arioch Wheeler of Mianus, Conn., after weeks of reading about Count Zeppelin and Henri Farman, who are conquering the air, opined that he, Arioch, would make a flight, so he constructed for himself a pair of paper wings and today he suddenly left his turnip patch and made a wild dash for Hiram Johnson’s barn.

He clambered to the roof and blithely adjusted the wings.

Arioch then posed gracefully, took in the wind situation and then laid his course across the Mianus River, a stream 12 feet from the barn.

Some farmers were near by and saw the man perched on the roof. They yelled to him to come down but he merely stretched out his hands and shrieked,

” I am Count Zeppelin. I am going to fly.”

In an instant Arioch had flung himself into the air — and also into the Mianus River. The wings kept him afloat till he was rescued.

He has been advised to patent his wings and dub them life preservers.

Ever since the Wright brothers designed an airplane in Dayton that flew at Kitty Hawk, mankind has been fascinated with defying gravity and setting new records in the air.

Millionaire adventurer Steve Fossett, 60, is one of these people. On Thursday, March 3, 2005, he became the first person to fly around the world solo without stopping or refueling, landing in Salina, Kansas after a 67-hour, 23,000-mile trip.

Sir Richard Branson, founder of Virgin Atlantic Airways and longtime friend and fellow adventurer, was the primary sponsor of the adventure. The $1.5 million airplane, Virgin Atlantic GlobalFlyer, was specifically designed for this record-breaking flight. It was designed by Burt Rutan and built by Burt Rutan’s Scaled Composites Company. Rutan built SpaceShipOne, the first private craft to fly into space.

The GlobalFlyer is no ordinary plane. It consists of three hulls attached to a wing that measures more than half the wingspan of a Boeing 747. Its wingspan is 114 feet with a wing area of 400-feet squared. Its length is 44.1 feet and has 7 feet of pressurized space for the pilot in a cigar-shaped cabin.

When all 13 fuel tanks in the hulls and wing are filled with JP-4 aviation fuel, the maximum takeoff weight is 22,000 pounds. The fuel load constitutes 83% of the total weight. It has a single engine turbofan airplane sitting atop of the cockpit.

It took most of the 12,300 feet of the runway at Salina to get off the ground.

With a lift-to-drag ratio of about 37, the craft has the performance of a sailplane while flying. Drogue chutes are deployed when landing to provide a reasonable approach angle for the low-drag craft.

The flight had some anxious moments. Within an hour or so of takeoff, for some mysterious reason, 15% of the precious fuel vanished. The loss of the fuel raised concern that Foster might not have enough fuel to complete the trip. A “go-no go” decision would have to be made at Hawaii since the plane flying East around the globe had Hawaii as the last landing opportunity before reaching California.

Fortunately, there were stronger-than-expected tailwinds that gave Foster confidence to decide to say, “let’s go for it.” He crossed the California coastline on Thursday morning and had enough fuel remaining to make it to Salina, Kansas.

The craft cruises 285 mph at a high altitude of 45,000 feet, 12,000 feet higher than a typical jetliner. That enables it to catch the high altitude jet stream that flows eastward around the globe. A favorable jet stream is crucial to save fuel.

He did wear a parachute in the event of the worst case scenario that of ditching the airplane. Also, the GlobalFlyer was an excellent glider and could glide up to 200 miles without fuel before having to land.

Another problem that occurred early in the flight was with a faulty GPS navigational aid. The flight would have had to be discontinued if the GPS had failed. Fortunately the flight team was able to solve the problem.

Flight pioneers since the Wright brothers have put both their money and their lives at stake to surpass every speed and distance there was. The first successful flight around the world occurred in 1924, 21 years after the Wrights’ first flight. It was flown by two U.S. Army Douglas single engine open-cockpit World Cruisers, each with a crew of two. The flight took 175 days to cover 26,345 miles, stopping in 29 countries along the way for fueling and maintenance.

Aviation pioneer Wiley Post made the first solo global trip in 1933. He made seven stops along the way.

The first nonstop global flight without refueling was made in 1986 with a propeller driven airplane, the Voyager, by Jeana Yeager and Dick Rutan. Dick is the brother of GlobalFlyer and SpaceShipOne designer Burt Rutan.

Steve Foster is an unusual person who thrives on risk taking and has pursued other exploits and records besides flying in airplanes. These include swimming the English Channel, setting 21 speed records for sailing, participating in the Iditarod Trail Sled Dog Race, driving twice in the 24 hours Le Mans Car Race, and setting a ballooning record flying solo round-the-world in 2002.

Although he lives life on the edge, he is not foolhardy. Like the Wright brothers, the risks he takes are carefully calculated down to the minutest detail.

He is able to do these things financially because he has made millions as an investment executive in the high risk trading area of commodities and options.

Why did he want to be the first to fly nonstop around the world? He said, “That was something I wanted to do for a long time, a major ambition. I do these things because I want to do them for my self-esteem and my personal satisfaction.” I can hear Wilbur saying much the same thing.

After the flight he added, “Believe me, its great to be back on the ground. That was a difficult trip. It was one of the hardest things I’ve ever done.”

He noted sleep deprivation was one issue as was as the unappealing diet of 12 diet milkshakes.

What’s in the future for Steve Fossett? He didn’t say except that he has three projects in planning right now. We may never know what they were.

Unfortunately, thirteen months after he mysterious disappeared on a fight taken on Sept. 3, 2007, over the Sierra Nevada mountains, his airplane and remains were found. Apparently he had flown his Bellanca Super Decathlon straight into a mountain on a cloudy day.

Not Again!

by Dr. Richard Stimson

in Others

The January 2005 of Carolina Journal, a monthly journal of news, analysis and commentary, contained the following article:

Ohio Targeted for Aviation Claims

No longer able to tolerate its false claims based on the location of Wilbur and Orville’s origins, NC Attorney General Roy Cooper said he will sue the state of Ohio for claiming to be the “birthplace of aviation.”

He said the “clearly false assertion” was undermining North Carolina’s long time reputation for being “first in flight,” and therefore harming its tourism and ultimately, its esteem.

“As self-established arbiter of linguistic integrity,” Cooper said, “I say Ohio’s motto is pure hogwash. They are ‘birthplace of aviators’ perhaps, but not aviation.”

Cooper said he would demand that Ohio replace all license plates that promote the slogan, and that the state remove the phrase from all state advertising. He said it would be unethical for lawmakers there to not remedy the situation.

After all, the Wright brothers could have chosen the winds off lake Erie to test their plane, Cooper said. “But they came to the Outer Banks instead. So, if they don’t take care of this, then phooey on Ohio!”

Comment: I thought we saw the end of this debate before the centennial celebration, but apparently not. Ohio has the right to the claim of being “birthplace of aviation” for the clear fact that the Wright Flyer and its predecessor kites and gliders were conceived, designed and built in Dayton, Ohio.

The Wrights selected Kitty Hawk as the site for flight testing because of its wind, sand, and isolation.

I know Roy Cooper and think very highly of him. I voted for him. But in this case he is wrong. This argument about mottoes is becoming tiresome. It is time to move on.

NASA Jet Sets New Speed Record

by Dr. Richard Stimson

in Others

A small, pilotless NASA experimental airplane set a new speed of almost 10 times the speed of sound on Tuesday November 17, 2004. It comes 100 years, 11 months, after the Wright brother’s first controlled flight. The NASA airplane, the X-43A, reached about 6,600 mph during a short flight over the Pacific Ocean that demonstrated that hypersonic flight is possible.

Orville’s first flight on December 17, 1903 was capable of a speed of about 34-mph in still air. On that day there was a head wind of 27-mph so that the ground speed was much slower. Wilbur had no trouble running along side the Flyer, steadying it, while it traveled down the launching rail.

During the early days of aviation, increases of flight speed were relatively slow.

To put this in perspective, by 1909 the Wright airplane demonstrated an average speed of 42.6-mph during the Army flight demonstrations at Fort Myer.

One year later the Wrights built an airplane designed for racing that demonstrated a significant increase in speed. It was clocked at flying over 77-mph with a new eight-cylinder engine. It was the Wright Model R, nicknamed the “Baby Grand.”

Less than 24 years after the first flight at Kitty Hawk, Charles Lindbergh’s airplane, the “Sprit of St. Louis,” was capable of attaining a maximum speed of 125-mph on his solo flight to Paris.

The development of the jet engine resulted in rapid improvements in speed.

An historic breakthrough in speed came on October 14, 1947, when Chuck Yeager became the first person to fly faster than the speed of sound (supersonic flight) flying the Bell X-1. His record-breaking speed was Mach 1.06, or 700 mph, and proved that airplanes can fly safely in the mysterious aerodynamic zone around Mach 1 formerly known as a “sound barrier.”

The SR-71A Blackbird spy plane flew in excess of 2,200-mph, or Mach 3 in 1964.

NASA has been working for the last few years on hypersonic flight, or speeds greater than Mach 5. Among the technical challenges of flying this fast is the development of an engine that can stand the forces necessary to generate hypersonic speed. A conventional jet engine would fly apart at hypersonic speed.

Jet engines operate according to Newton’s Law, that for every action there is an equal and opposite reaction. That means that the faster the jet, the faster the exhaust has to be shooting out of the engine.

In a conventional jet engine the turbine blades that are used to compress air for combustion would fly apart.

The purpose of NASA’s research is to develop technology for a new type of engine known as a “scramjet” that can work at hypersonic speeds. Scramjet is an acronym for “supersonic combustion ramjet.”

A scramjet has no moving parts and achieves compression by sucking in and compressing air at supersonic speeds. It reaches rocket-like speeds, but unlike rockets, it does not need oxygen to ignite the fuel supply. Instead it takes oxygen from the atmosphere.

For a long time experts thought that it was not possible to ignite the fuel in a supersonic air stream. It would be analogous to “striking a match in a hurricane.”

NASA built and tested three unmanned vehicles containing the new engine. They tested three vehicles so that, like the Wright brothers, they could use the lessons learned from each succeeding flight to improve the next one.

Operational testing is particularly essential for the X-43A because, while the Wrights were able to effectively used their wind tunnel to design their Flyer, it is very difficult to test on the ground at hypersonic speeds. While the design of the engine is mechanically simple it is very complex aerodynamically.

The first test flight failed because of a booster rocket problem. The second test established a new world speed record of Mach 7. The last flight, on Nov. 17, broke the previous record by flying at a spectacular Mach 10.

Here is the sequence of events during the last test flight:

Scramjets start to work only at about Mach 6 and therefore must be given a boost. A modified Pegasus rocket provides the boost.

The 12-foot long wedge-shape X-43A, attached to the nose of the Pegasus rocket, was carried under the right wing of a B-52B aircraft to 40,000 feet. It was then dropped about 50-miles off the southern California coast.

The solid rocket motor took the stack up to mach 10 at 110,000 feet.

The motor burned out after 7-8 seconds and pistons pushed the X-43A forward away from the rocket and the higher density of the X-43A made it pull ahead of the Pegasus rocket.

The X-43A engine inlet was then opened and in 3 seconds the engine started firing using hydrogen fuel maintaining a speed of Mach 9.65 at 110,000 feet. This continued for 10-12 seconds. The inlet door then closed 8-9 seconds later for the rest of the flight.

The X-43A then descended while performing maneuvers to test its aerodynamic characteristics. The craft splashed into the ocean after an approximate total flight time of 14 minutes and 850 miles.

What now? Any near term applications of scramjets will probably be military because that is where the money is and NASA has not funded a continuation of the $230 million program. The Wright brothers also received a military contract in 1909.

One of the advantages of a scramjet rocket is that it doesn’t require a heavy, huge oxygen container. Rockets combine liquid fuel with liquid oxygen to create thrust. The larger the rocket the larger the oxygen container in a conventional rocket.

Without the added weight and space, cheaper and easier space missions are possible such as flights to the moon and space stations. Airplanes can cross the Atlantic in 40 minutes.

The U.S. Air Force is researching how to use the technology to create cruise missiles that could reach enemy targets at lightning speed.

Few people in the early days of aviation saw the potential of the airplane. The Wrights themselves didn’t foresee jumbo jets routinely flying across the oceans or space flight.

After World War II, the Dayton Wright Airplane Co., then owned by General Motors, decided to stop building and selling airplanes because they thought there was no longer a profitable future for airplanes after the war.

What the NASA X-43A has done for hypersonics is equivalent to what the Wright brothers did for subsonics 100 year ago. It is amazing what has been accomplished in such a relatively short time.

Founder of the X Prize

by Dr. Richard Stimson

in Others

It was an exciting moment on October 4, 2004 when SpaceShipOne completed its mission by flying seventy miles into space to win the X Prize.

The media contained pictures of Burt Rutan, the designer of the craft, the pilots Michael Melvill and Brian Binnie who flew the two flights, and Paul Allen who provided most of the funds. You had to look hard to find the short, smiling man who was responsible for the prize.

His name is Peter H. Diamandis, and he is an interesting story in itself. Diamandis became obsessed with space as a boy when he watched the Apollo moon landing. He too wanted to go there.

He decided to become an Aerospace engineer and attended the Massachusetts Institute of Technology (MIT) where he was active as a student in pursuing his interest in space travel.

His father was a medical doctor and his parents were not so sure he was pursuing the right career. His mother wanted him to be a doctor and follow in the footsteps of his father. To please her, after graduation from MIT he attended Harvard Medical School and earned his medical degree.

He now had two degrees but his passion was still space travel. In 1986, after the Challenger disaster, he concluded that the best and quickest way to open the space frontier was through the private sector.

From that time on he has dedicated himself to find a way to achieve the advancement of human spaceflight by making space travel accessible to everyone.

He had a vision, but how does one make it happen. He had supporters as well as many doubters. The break came when Greg Marynjak, a college friend and now the X Prize Foundation Director, gave Diamandis a copy of Charles Lindbergh’s autobiography “The Spirit of St. Louis.”

The aviation legend, Lindbergh, was motivated by the $25,000 prize that Raymond Orteig established for the first nonstop flight between New York and Paris. Lindbergh’s triumphal flight on May 21, 1927 opened the way for rapid commercialization of flight.

Diamandis wasn’t so much interested in Lindbergh after reading the book as he was in the idea of a prize to motivate innovation. He reasoned, why not create a space prize and get some St. Louis businessmen to back it just as Lindbergh had done. He decided to call it the X Prize worth $10 million.

In March of 1996, he followed Lindbergh’s script and invited a group of St. Louis businessmen for drinks at the historic Racquet Club, using the same table used by Lindbergh a generation before.

Diamandis told them that St. Louis could be a “gateway to the stars” while showing them old clips of James Stewart playing Lindbergh in the movie, “Spirit of St. Louis.”

It must have been quite a show. He picked up $25,000 from the seven businessmen in attendance. It was a great start.

On May 18th under the Arch in St. Louis, he announced the formation of the X Prize Foundation. The first privately financed team to fly a reusable spacecraft would win the $10 million dollar X Prize. Charles Lindbergh’s grandson, Eric Lindbergh, was there as a vice president and trustee of the X Prize Foundation.

Eric two years ago celebrated the 75th Anniversary of his grandfather’s famous flight across the Atlantic by duplicating the flight by himself.

Also in attendance in St. Louis was Burt Rutan, the ultimate winner of the first X Prize with his SpaceShipOne. He was also the first to register for the prize. Later he admitted that he didn’t think about designing a spacecraft until 1999. He begin a full development program two years later after Paul Allen agreed to provide most of the financing for the effort.

After the initial burst of enthusiasm, Diamandis found it hard to raise the prize money. The big corporations shied away because they were afraid that the mission would fail and they didn’t want their corporate name attached to a failed spacecraft.

Despite round the clock fund raising efforts by Diamandis, the X Prize Foundation was potentially looking at bankruptcy as 2001 began. Then by chance, Diamandis read a Fortune magazine article about a couple of Texan telecommunication entrepreneurs who were interested in space travel.

He rushed to Dallas and met Anousheh Ansari and her brother-in-law, Amir. Bingo! He received a commitment of more than $1 million. The X Prize race was still on, but now under the banner of the renamed Ansari X Prize and Anousheh Ansari became a board member of the X Prize Foundation.

In another interesting strategy by Diamandis, who is always thinking out-of-the-box, an insurance company will be the entity that actually pays the prize money. The X Prize foundation (Ansari) paid an insurance company, Bermuda-based XL Capital, for a special “hole-in-one” insurance policy in which the insurance company essentially bets against success. The insurance company lost and must pay the prize money.

The X Prize Foundation will award the X Prize at a ceremony in St. Louis on November 6th.

The X Prize, said Diamandis, is the beginning, it is not the end of space competitions. Twenty-six teams had registered for the X Prize and many plan to continue their effort to fly a spacecraft.

The one closet to launch is the da Vinci project. The team leader, Brian Feeney, hopes to try a launch by November 1.

Also, the X Prize Foundation has announced an annual X Prize Cup to be held in Las Cruces, New Mexico that will serve as an air show for spacecraft. Prizes will be awarded in categories such as: fastest turnaround time, maximum number of passengers per flight, maximum altitude, fastest flight time, and coolest ship. The event hopes to launch some fifty space flights over a 10-day period beginning in December 2006

SpaceShipOne was a suborbital achievement. The ultimate goal is for orbital flight. Robert Bigelow, who heads an aerospace company in Nevada, has announced a “Bigelow Prize” worth $50 million.