Lance Armstrong recently won his seventh consecutive Tour de France. In doing so he has become the most accomplished cyclist of his generation and earned a position in the exclusive tier of world athletes who dominate their sport for years.
His speed was the fastest in the 102 years of the tour. He completed the 2,232-mile course in 86 hours, 15 minutes, 2 seconds for an average speed of 25.88 mph.
In Europe, and especially in France, cycling is considered a major sport and Armstrong’s achievement is a tremendous accomplishment. In this country most people consider cycling a minor sport although in recent years because of Armstrong, the Tour de France has become a must-see event for three weeks each summer. OLN-TV reported an average audience of 1.7 million, the largest in the history of OLN.
It wasn’t always that way. A hundred years ago Americans were bicycle crazy. Among those Americans were the Wright Brothers.
There are some common elements that Armstrong and the Wright Brothers share. This is the story.
Wright Brothers Bicycle, Father of the Airplane
The Wrights established a bicycle shop in Dayton, Ohio in 1892, at a time when bicycles were popular and touted as a “boon to mankind” as well as a national necessity. Orville and Wilbur started the business because many friends were asking them to repair their bikes. Even then the Wrights had a reputation for having exceptional mechanical skills and they were well known in the bicycle community as well as avid bikers.
They were leaders of a local bicycle club and Orville had a number of medals for winning bike races. Wilbur did not race, but he did participate, sometimes serving as a starter.
The bicycle business was so good they decided to drop their existing printing business and concentrate on manufacturing and selling their own brand of high quality bicycles in 1896. Their bicycle business was destined to become the key to inventing the first powered airplane, the Flyer.
The funds from the business financed the construction of their gliders and the Flyer, as well as their trips to Kitty Hawk, North Carolina. The Wrights never made more than $3,000 a year from their bicycle shop, but they were frugal with their funds. Inventing flight cost them the grand sum of $1,200.
Possibly even more important, they developed their successful concept for man-flight from their bicycle experience. They were the first to view flying an airplane as comparable to riding a bicycle. They knew that to fly an airplane, balance and control were important. One must learn how to do it just as one must learn to ride a bicycle. A pilot must bank turns just as a rider on a bicycle turns a corner.
The Wrights incorporated many bicycle parts in the Flyer. The propeller sprocket-and-chain drives were modified bicycle parts. So was the chain used in the wing warping linkage, spoke wire, tubular steel, ball bearings and later, bicycle wheels. A bicycle wheel hub kept the Flyer on a wooden rail until takeoff.
One of the critical considerations of designing an airplane or racing a bicycle is an efficient use of energy to accomplish the work required. The Wrights, unlike their competitors, used the scientific method to achieve this goal with the Flyer.
Their machine only required a 12-horsepower gas engine fed by a 2-1/2 quart fuel tank to propel the 605-pound Flyer. Their competitors, in the meantime, had much more powerful engines, but failed.
The Wrights accomplished this feat by designing a lightweight, but strong structure. The wings were contoured to provide maximum lift. Propellers were shaped to produce maximum thrust and a streamline design, including the pilot in a prone position, were employed to reduce drag (wind resistance).
In contrast, nine days before the Wrights won the race to be the first to fly, Samuel P. Langley, secretary of the Smithsonian Institution, failed to fly his “Great Aerodrome.” An incredible 52-horsepower engine powered the machine but the power was wasted by a poor aerodynamic design and it crashed into the Potomac River like a rock after launching from a houseboat in the Potomac River.
Lance Armstrong, King of the Hill
Things didn’t look good for Armstrong back in October 1996. His doctor’s told him he had testicular cancer that had metastasized to his brain, abdomen and lungs. They gave him a chance of survival of between 40-50%. In reality, they thought his chances were much worse.
Lance Armstrong’s miracle recovery from advanced testicular cancer and his racing achievements are products of his choice of a high-risk form of chemotherapy (ifosfamide) and an intense physical training program. He went on to win the world’s most grueling sport less than three years later.
Efficient use of energy is as vital for Lance as it was for the Wright Flyer. Cyclists use up some 10,000 calories a day while racing.
Here are two vignettes that illustrate Lance’s challenge and success.
One of the key victories in the year 2001 Tour de France was the race up the Alpe d’Huez during stage 10 of the 20-stage race in which Lance beat Jan Ullrich, who won the Tour in 1997 and his main threat every year, by almost two minutes.
Ullrich is a powerful rider, but he weighs more than Armstrong. If two riders produce the same amount of power, but one weighs less than the other does, the lighter rider has the capability of climbing faster.
The strategy of Armstrong was to use his advantage in power to weight ratio to burst past Ullrich just as the riders started up the steep slope of the Alpe d’ Huez.
To set this up, US Postal’s Jose Luis Rubiera set a blistering pace in front of Lance allowing Lance to ride in his slip stream and save energy. Ullrich was next in line, but out of the slipstream, and had to use up additional precious energy to keep up. Once Rubiera could no longer set the pace, he moved aside and Lance, with a burst of speed, left Ullrich behind to win the stage.
The other vignette took place during the just finished Tour’s first stage 19-kilometer time trial.
Armstrong rolled down the starting ramp a minute after Ullrich, who has never been overtaken in a time trial. Armstrong got off to a slow start because his foot slipped off the pedal. No matter, A mile or so later Armstrong passed him on the right without so much as a glance. Ullrich never recovered from the shock.
Armstrong’s high cadence climbing style and strong aerobic engine gives him an advantage in the mountains. He has the ability to produce more power than the other riders do before he reaches his lactate threshold. The lactate threshold is the point at which lactic acid, a byproduct of chemical breakdown, accumulates in the muscles faster than it can be cleared, causing fatigue.
Armstrong trains specifically to raise his lactic threshold by endurance training. There are no short cuts. An athlete’s body will slowly change in response to stress placed on it. Fuel utilization becomes more efficient, tendons and ligaments grow stronger and muscle cells increase their ability to store and process glycogen, a source of energy in the body.
Armstrong trains predominately going uphill, keeping the intensity below the lactic threshold. The purpose is to push the threshold up by training just below the threshold. Training above the threshold has the opposite effect and reduces the threshold. Scientifically measuring a number of parameters such as heart rate, blood lactate and power measured in watts, monitors all of this activity.
He rides every day from two to eight hours and spends an hour three days a week in the gym. He also does some trail running.
Challenges become Opportunities
Both the airplane pioneers Orville and Wilbur Wright and cyclist Lance Armstrong have had their critics. Critics said the Wright Flyer was too fragile and underpowered. People in Dayton used to mock their kite flying experiments. Many people didn’t believe they had actually flown at Kitty Hawk until years later. The French mocked them as “bluffers,” than cheered Wilbur when he flew in France not far from Paris in 1908.
The French cheered Armstrong in Paris but some French have hassled Armstrong with spiteful rumors of drug charges. They believe that his heroic achievements were too good to be true without the use of performance enhancing drugs.
The Wrights and Armstrong both challenge the parameters of the physical world. One with machines the other with his body. They both view the physical challenges as opportunities, not boundaries and use the scientific approach to obtain success.
They both exhibited a single-minded commitment and passion that enabled them to succeed. The Wrights built gliders and an airplane that exhibited meticulous workmanship that probably exceeded that necessary for experimental purposes. Their approach mirrored their construction of quality bicycles.
Lance focused on such details as his diet, his training program, bicycle components, Jersey fibers, wattage produced during workout and heart rate.
Armstrong, 165 pounds, pushed his Trek bicycle design team to give him a lighter and more efficient bicycle. The design team used aerospace-pioneered software that predicted how air would pass over the carbon fiber bicycle most efficiently. Armstrong exclaims we’re “fanatics!”
Neither the Wrights or Armstrong have college degrees. Armstrong says that “what we do is hard work and hard works wins it.”
Armstrong recently summed it up: “You have to have a basic gift and then it’s how you work with that gift, how you shape it, the work that you do, the intensity you do it in and then the motivation for the race.”
On Sunday July 24, 2005, Lance Armstrong, 33, stood on the winning platform before an estimated 500,000 people on the Champs-Elysees while the U.S. National Anthem played. In the background were the Arc de Triomphe and the Eiffel Tower. He bit his lip to keep from shedding a tear. He had ridden a total of 15,174 miles in his seven Tour victories. He exclaimed,”Vive le Tour.” Paused and added, “Forever”
President Bush remarked, “Lance is an incredible inspiration to people from all walks of life, and he has lifted the spirits of those who face life’s challenges. He is a true champion.”
Lance says he now has two top priorities – his family and his cancer foundation. The latter has raised some $85 million.
His 5-year old son said at the end of the ceremonies – “Daddy can we go home and play?”